A Novel Hemispherical and Dynamic Camera for EVAs, Phase II

Completed Technology Project (2013 - 2015)

Project Introduction

This SBIR project is to develop a novel Hemispherical and Dynamic Camera(HDC) with ultra-wide field of view and low geometric distortion. The novel technology we proposed would lead to ultra-compact, low-power, light weight, and high resolution hemispherical camera for EVAs. We successfully completed the Phase 1 project with a novel optical design, functional prototypes, extensive experimental results and commercialization potential. All Phase 1 objectives are met and exceeded. Phase 2 program will afford us to design and build a fully functional miniature EVA camera systems, and perform extensive tests for NASA's EMU and EVA applications. Capitalizing upon the breakthrough we have made thus far, we propose the following Phase 2 technical objectives: Objective 1: Design and build a fully functional prototype of the EMU camera system; Objective 2: Carry out extensive validation experiments and improve the EMU camera prototype; Objective 3: Design and build a prototype of EVA Smart PTZ camera; Objective 4: Carry out extensive validation experiments and improve EVA Smart PTZ prototype; Objective 5: Work closely with COTR to facilitate NASA applications and broad adoption of the Neo360 optics and Smart PTZ technologies developed under this SBIR; Objective 6: Pursue commercialization of the developed Neo360 and Smart PTZ technology.

Primary U.S. Work Locations and Key Partners

A Novel Hemispherical and Dynamic Camera for EVAs

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

A Novel Hemispherical and Dynamic Camera for EVAs, Phase II

Completed Technology Project (2013 - 2015)

Organizations Performing Work	Role	Туре	Location
Xigen, LLC	Lead Organization	Industry	Rockville, Maryland
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Maryland	Ohio

Project Transitions

0

July 2013: Project Start

July 2015: Closed out

Images

Project Image

A Novel Hemispherical and Dynamic Camera for EVAs (https://techport.nasa.gov/imag e/126821)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Xigen, LLC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Jason Geng

Co-Investigator:

Jason Geng

Small Business Innovation Research/Small Business Tech Transfer

A Novel Hemispherical and Dynamic Camera for EVAs, Phase II

Completed Technology Project (2013 - 2015)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - □ TX06.2 Extravehicular Activity Systems
 - □ TX06.2.3 Informatics and Decision Support Systems
 ☐

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

